

FOCUS A -TUMOR INTRINSIC **MECHANISMS**

FOCUS B -**TUMOR MICRO-ENVIRONMENT**

FOCUS C -**TECHNOLOGICAL** INNOVATION

RNA-seq

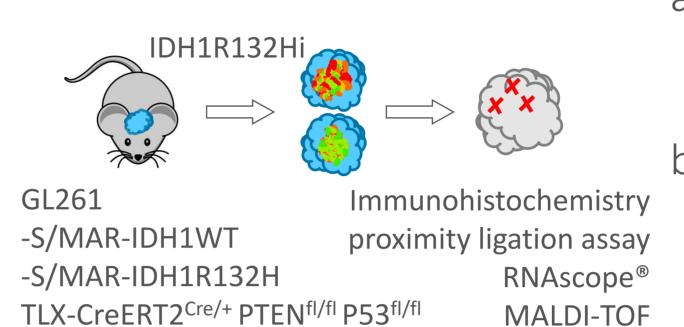
FACS

FACS

FOCUS D -UNITE CORES

B03 – TARGETING IMMUNOSUPPRESSIVE PROGRAMS IN ISOCITRATE DEHYDROGENASE MUTANT GLIOMAS

Stefan Pusch & Lukas Bunse


SUMMARY

This project aims at evaluating and targeting immunosuppressive glioma cellintrinsic and -extrinsic metabolic programs and microenvironmental immunomodulation to develop combinatorial targeted (immuno-) therapies for isocitrate dehydrogenase (IDH) mutant gliomas. The strategic aim is to utilize immunosuppressive IDHassociated metabolic vulnerabilities in pathophysiologically relevant preclinical glioma models for rationalizing combinatorial clinical trials.

TASK

Preclinical investigation of R-2-HG-associated transcriptomic, metabolic and proteomic immune cell signatures and their intratumoral heterogeneity

VISUAL ABSTRACT

-S/MAR-IDH1WT

-S/MAR-IDH1R132H

-S/MAR-IDH1R132H

IDH1R132H-A2DR1 glioma

IDH1R132Hi

WORKFLOW

a) spatial resolution immunological tissue analyses combined with local R-2-HG levels Evaluation of R-2-HG-associated AHR-dependent immunosuppressive intratumoral programs

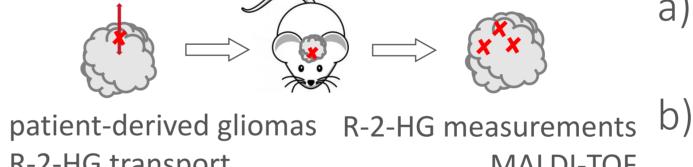
scRNA-seq C) Paired single immune and tumour cell analyses in infiltrative preclinical glioma

reversibility of immunosuppressive programs by IDH1R132Hi

Task 2 –

Task 1 –

Evaluate efficacy and dynamics of the inflammatory glioma microenvironment upon preclinical combinatorial therapeutic interventions for IDH1-mutant gliomas

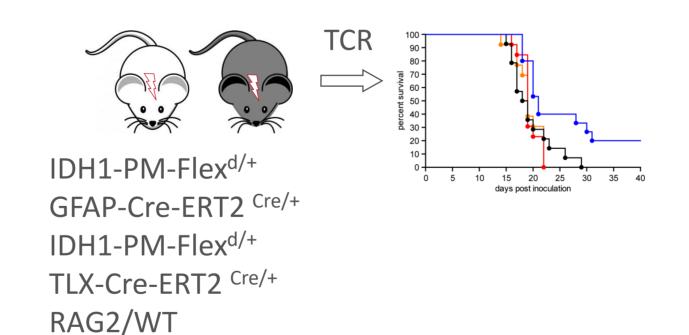

IDH1-vaccine b) **GL261** radiomics -S/MAR-IDH1WT iron oxide nanoparticles -S/MAR-IDH1R132H MALDI-TOF TLX-CreERT2^{Cre/+} PTEN^{fl/fl} P53^{fl/fl} RNA-seq C) -S/MAR-IDH1WT scRNA-seq

antigen processing and presentation capacity of myeloids evaluation of IDH1R132Hi and T cell therapy in preclinical mutant IDH1 A2DR1 gliomas

evaluation of AHRi and mutant IDH1-specific immunotherapy in preclinical gliomas

Task 3 –

Identify routes and evaluate potential druggable targets of R-2-HG transport in IDH1 mutant gliomas



R-2-HG transport **MALDI-TOF** pharmacological inhibition RNA-seq CRISPR-Cas9 **FACS**

- verification of SLC13A3 as R-2-HG transporter in human gliomas CRISPR-Cas9 screen in patientderived IDH1-mutant glioma tumour spheres
- pharmacological inhibitors of R-2-HG export in patient-derived IDH1 mutant glioma tumour spheres
- Effect of identified inhibitors on the microenvironment

Task 4 –

Evaluate mechanisms of natural immune surveillance of single in vivo-induced IDH1 mutated cells

- evaluate existence of a natural immune surveillance of single IDH1-mutant astrocytes
- evaluate existence of a natural immune surveillance of single IDH1-mutant neural stem cells
- immunosurveillance by MHCIIrestricted mutant IDH1-specific T cell receptors

Task 5 –

Generation of PBMChumanized, patientderived IDH1R132Hmutant brain tumour xenograft models from patients enrolled in the AMPLIFY-NEOVAC trial to study response and resistance mechanisms after combinatorial immunotherapy

establish NSG-SGM3 humanization protocols establish AMPLIFY-NEOVAC PDX evaluate combinatorial immunotherapy including IDH1vaccine, mutant IDH1-specific T cell transfer, and checkpoint inhibition in combination with a mutant IDH1 inhibitor, respectively

